



### Community Science Institute

<u>Independent, nonprofit, tax-exempt</u> environmental organization founded in 2000, website: communityscience.org

**Budget and Staff**: Four (4) full-time, four (4) part-time; \$268,000 in  $2017, \sim 37$  % from local governments and other stakeholders in Tompkins County

<u>Certified water quality testing lab</u>: NY State and EPA certified for both non-potable water and drinking water since 2003.

QAPP-based, affordable monitoring partnerships between certified lab and volunteer groups:

We recruit, train and partner with community-based volunteer groups to build scientifically credible, long-term data sets -- at less than half the cost of environmental consulting firms -- with the goal of understanding and protecting water resources locally and regionally

<u>Free online access to raw data and interpretive maps and graphs</u>: Public can view raw data with maps and graphs, also search and download results, at database.communityscience.org

<u>Biological stream monitoring</u>: CSI staff also partner with volunteer groups to monitor the health of streams as aquatic ecosystems by collecting and identifying small bottom-dwelling organisms called benthic macroinvertebrates (BMI), on a par with NYSDEC's stream monitoring program

### Maintaining a Certified Lab - Benefits and Challenges

#### Maintaining a certified lab is a lot of work!

- The quality assurance and quality control measures are extensive.
- The amount of paperwork involved is sizable.
- Inspections are rigorous.

### So why make the effort?

- Certified data can be used for regulatory purposes.
  - It is difficult for citizen science groups to ensure that their data is taken seriously. Certification is one way.
- Maintaining certification also allows CSI to address the community's potable water testing needs.





### Volunteer Water Monitoring Partnerships

#### **Three Volunteer Water Monitoring Programs**

- Synoptic Sampling
- Red Flag Monitoring
- **Biomonitoring**



### CSI Monitoring Programs - Synoptic Sampling

### Three Volunteer Water Monitoring Programs

- Synoptic Sampling
  - Certified Lab Analyses
  - Analytes include:
    - E. coli
    - Total Phosphorus
    - Soluble Reactive Phosphorus
    - Nitrate -+ Nitrite Nitrogen
    - Total Kjeldahl Nitrogen
    - Ammonia Nitrogen
    - Turbidity
    - Total Suspended Solids
    - Chloride
    - Chlorophyll a
    - And others
  - Primary focus of program is monitoring nutrients, sediment, and pathogenic bacteria

### **Synoptic Sampling Process**



 Water samples are collected by teams of volunteers three to four times a year including once under storm water conditions.
 Sampling of a single stream, from headwaters to mouth, occurs within a few hours to get a "snap-shot" of water quality.



 Volunteers bring samples to CSI's certified lab and complete a chain of custody.



 Samples are analyzed by CSI staff using certified methods.



 Test results are entered into CSI's online public database:



www. database.communityscience.org



### Seneca Lake Tributary Stream Volunteer Monitoring

A Volunteer-CSI Synoptic Monitoring Program

- Water quality in Seneca Lake is determined largely by water quality in its many tributary streams
- Water quality in streams is, in turn, determined largely by land use in their watersheds, for example, forest, agriculture, waste water treatment plants, natural areas, and diverse types of businesses
- ❖ SLPWA volunteers collect samples several times a year at ~25 fixed locations on 5 tributary streams draining 48% of the Seneca Lake watershed
- Locations have been chosen to maximize the likelihood of documenting potential impacts



Fixed Locations
Monitored Regularly by
SLPWA Volunteers on
Seneca Lake Tributary
Streams

Total drainage area monitored:  $\sim$ 226 mi<sup>2</sup>

Total number of monitoring sites:  $\sim 25$ 

View, search and download raw data free at database.communityscience.org





## Program Focus is on Nutrients, Bacteria, Sediment and Hazardous Chemicals

- Monitoring partnership between SLPWA and CSI produces reliable measurements of water quality indicator <u>concentrations</u> under base flow and high flow conditions
- Concentrations at stream mouths reflect total watershed contributions to water quality, including groundwater (base flow) plus surface and sub-surface runoff (at high flows)
- Concentrations at stream mouths are also general indicators of nearby nutrient concentrations in the lake
- Note: Concentrations are <u>not</u> the same as the <u>amounts</u> or <u>loads</u> (mass) of nutrients entering Seneca Lake

### No Evidence of Hazardous Substances in Reeder Creek Downstream from Seneca Army Depot

|                                     | N. Patrol Rd. | Access Rd. | Rte 96A | Mouth   | <u>Drinking</u> Water<br>Standard |
|-------------------------------------|---------------|------------|---------|---------|-----------------------------------|
| Gross Alpha Radioactivity (pCi/L)   | 0.31          | 0.39       | - 0.37  | 0.64    | 15 pCi/L                          |
| Gross Beta<br>Radioactivity (pCi/L) | 2.4           | 2.66       | 1.28    | 2.31    | 15-50 pCi/L                       |
| Arsenic (mg/L)                      | <0.01         | <0.01      | <0.01   | <0.01   | 0.01                              |
| Beryllium (mg/L)                    | <0.001        | <0.001     | <0.001  | <0.001  | 0.004                             |
| Copper (mg/L)                       | <0.002        | 0.004      | 0.002   | 0.003   | 1.3                               |
| Lead (mg/L)                         | <0.01         | <0.01      | <0.01   | <0.01   | 0.015                             |
| VOCs (58 total) (mg/L)              | <0.0005       | <0.0005    | <0.0005 | <0.0005 | 0.005                             |

### Average E. coli Counts

Contact Recreation Limit = 235 colonies/100 mL

Stream (North to South)

Average E. coli at stream mouth, base flow

Average E. coli at stream mouth, stormwater (colonies/100 ml) (colonies/100 ml)

| Reeder Creek    | 264 | 12,500 |
|-----------------|-----|--------|
| Kashong Creek   | 996 | 15,000 |
| Keuka Outlet    | 582 | 59,250 |
| Big Stream      | 202 | 38,175 |
| Catharine Creek | 349 | 2,615  |



### Average E. coli Counts

Contact Recreation Limit = 235 colonies/100 mL

Stream (North to South)

Average E. coli at stream mouth, base flow

Average E. coli at stream mouth, stormwater (colonies/100 ml) (colonies/100 ml)

| Reeder Creek    | 264 | 12,500 |
|-----------------|-----|--------|
| Kashong Creek   | 996 | 15,000 |
| Keuka Outlet    | 582 | 59,250 |
| Big Stream      | 202 | 38,175 |
| Catharine Creek | 349 | 2,615  |



# Average Dissolved (~Bioavailable) Phosphorus Concentrations Measured at Stream Mouths

| Stream (North to<br>South) | Average Dissolved<br>Phosphorus,<br>Base Flow<br>(µg P/L) | Average Dissolved<br>Phosphorus,<br>Stormwater<br>(µg P/L) |
|----------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Reeder Creek               | 326.21                                                    | 255.33                                                     |
| Kashong Creek              | 43.38                                                     | 52.20                                                      |
| Keuka Outlet               | 32.51                                                     | 176.50                                                     |
| Big Stream                 | 59.18                                                     | 81.62                                                      |
| Catharine Creek            | 12.76                                                     | 14.95                                                      |





### General Comparison Between Dissolved P in Seneca Lake Streams and Cayuga Lake Streams

- Reeder Creek: Dissolved P is extremely high in groundwater feeding Reeder Creek, possibly due to legacy contamination from munitions disposal at the Seneca Army Depot
- Base flow dissolved P concentrations average ~3x higher in the other four monitored Seneca Lake streams, ~37 ug/L, compared to ~13.4 ug/L in five Cayuga Lake streams
- <u>Stormwater</u> dissolved P concentrations average ~2x higher in Seneca Lake streams, ~81 ug/L, compared to ~45 ug/L in five Cayuga Lake streams

# Average Particulate Phosphorus Concentrations at Stream Mouths = Total P – Dissolved P (Not Readily Bioavailable)

| Stream (North to<br>South) | Average<br>Particulate<br>Phosphorus,<br>Base Flow<br>(µg P/L) | Average<br>Particulate<br>Phosphorus,<br>Stormwater<br>(µg P/L) |
|----------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Reeder Creek               | (-22.9)                                                        | 283.0                                                           |
| Kashong Creek              | 1 <i>7.7</i>                                                   | 118.8                                                           |
| Keuka Outlet               | 20.4                                                           | 535.0                                                           |
| Big Stream                 | 2.19                                                           | 548.2                                                           |
| Catharine Creek            | 22.8                                                           | 62.3                                                            |





### What is "Particulate Phosphorus?"

- "Particulate phosphorus" is the phosphorus associated with particles that do not pass through a fine (0.45 micron) filter
- Particulate phosphorus is calculated as the difference between two measured quantities: Total phosphorus, which includes dissolved and particulate phosphorus, and dissolved phosphorus:
  - Particulate P = Total P Dissolved P
- High particulate phosphorus is generally correlated with high concentrations of suspended soil and sediment at high flows, e.g., in Big Stream and Keuka Outlet
- Particulate P is mostly stored in lake sediments and is believed to have only a small degree of bioavailability compared to dissolved P

# Average Total Nitrogen Concentrations Measured at Stream Mouths (NOx + Total Kjeldahl Nitrogen)

| Stream (North to | Average Total<br>Nitrogen, Base | Average Total<br>Nitrogen, |
|------------------|---------------------------------|----------------------------|
| South)           | Flow<br>(mg/L)                  | Stormwater<br>(mg/L)       |
| Reeder Creek     | 1. <i>7</i> 3                   | 4.74                       |
| Kashong Creek    | 2.47                            | 5.11                       |
| Keuka Outlet     | 2.47                            | 7.39                       |
| Big Stream       | 1.55                            | 4.09                       |
| Catharine Creek  | 0.84                            | 1.40                       |





### General Comparison Between Total Nitrogen in Seneca Lake Streams and Cayuga Lake Streams

- Total nitrogen is the sum of inorganic nitrogen including nitrate  $(NO_3)$  and nitrite  $(NO_2)$ ; ammonia  $(NH_4)$ ; and organic nitrogen, mainly protein  $(N_{org})$
- Main source of inorganic nitrogen is fertilizer; main sources of organic nitrogen and ammonia are animal waste and decaying plant matter
- <u>Base flow</u>: Total N concentrations are similar, 1.8 mg/L in five monitored Seneca Lake streams and 2.0 mg/L in five Cayuga Lake streams
- Stormwater: Average total N concentration increases to 4.5 mg/L in monitored Seneca Lake streams, somewhat more than the increase to 3.5 mg/L in five Cayuga Lake streams



# Nutrient concentrations are great to know. So are loads. Why?

- A load is the actual amount, or mass, of a pollutant that enters a waterbody such as Seneca Lake
- For non-point source pollutants, the load depends on pollutant concentration and the size of the stream
- Having the data that's needed to estimate loads makes it possible to prioritize streams, and catchment areas within a stream's watershed, for pollutant reduction efforts
- A load reduction strategy called "Total Maximum Daily Load" (TMDL) is incorporated into the Clean Water Act



### To Calculate Load: Combine Nutrient Concentrations with USGS Flow Measurements

Nutrient Load = Nutrient Concentration x Stream Flow

= [Nutrient] (ug/L or mg/L) x [Flow] (cfs)

Transform units and calculate load in tons/year

- Concentrations are measured in CSI's certified lab (ELAP# 11790) on samples collected by trained volunteers
- Flows are measured by USGS gauging station, if there is one
- Flows are estimated using drainage area ratio, if there isn't
  - Estimate assumes flow is proportional to drainage area
- Concentrations and flows are needed to calibrate Loadest software



## Calculating Loads When Flows Are Measured or Can Be Reasonably Extrapolated From USGS Gauging Station Measurements

Simple step-by-step description of LOADEST Load Estimation Methodology

| Step | Description                                                     | More Info              |
|------|-----------------------------------------------------------------|------------------------|
| 1    | Download Phosphorus concentration data from CSI Website         | Website                |
|      | Download daily average and instantaneous flow data from         |                        |
| 2    | USGS website                                                    | Website                |
| 3    | Download Latest LOADEST version (2013) and documentation        | <u>Website</u>         |
|      | Calculate watershed area at CSI monitoring location -           |                        |
| 4    | StreamStats                                                     | <u>Website</u>         |
|      | Estimate flows at CSI monitoring site using watershed are ratio |                        |
| 5    | method                                                          |                        |
|      | Create Calib file for each analyte (SRP and TP) including       |                        |
| 6    | instantaneaous flow estimations and CSI concentration data      | TP_Calib!A1            |
| 7    | Create Est file using daily average flow data                   |                        |
| 8    | Run LOADEST for Model 1 and using model auto-select option      |                        |
|      | Select model with best model fit stats for a given analyte and  |                        |
| 9    | watershed                                                       | Model Fit'!A1          |
|      | Obtain load results from LOADEST for each parameter for         |                        |
| 10   | selected model                                                  | <u>Load_Results!A1</u> |
| 11   | Sum loads over water years to get final yearly load numbers     | Yearly Totals'!A1      |
|      | Optional step: determine days with significant stormwater flow  |                        |
|      | in order to estimate loads occurning during stormwater events   | Online baseflow        |
| 12   | versus days with base flow.                                     | separation tool        |

#### LOADEST Documentation

Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods Book 4, Chapter A5, 69 p.



### Predicting Nutrient Loading When Flows Cannot Be Reasonably Extrapolated From Gauged Streams

- There are no USGS gauging stations providing continuous flow measurements on any Seneca Lake tributary stream
- Nevertheless, nutrient loading from monitored streams to Seneca Lake can be predicted to a reasonable degree of approximation if it is assumed that:
  - 1. Load is proportional to a stream's drainage area
  - 2. Load is proportional to stormwater nutrient concentrations
  - 3. Load can be indexed to loading from a reference stream

Reference stream: Fall Creek in Cayuga Lake watershed, which has USGS gauging station. Drainage area is  $129 \text{ mi}^2$ , average stormwater dissolved P at mouth = 25 ug/L, and dissolved P loading to Cayuga Lake = 4.34 tons/year (3-year average)

Test of prediction approach to estimating loads: Predicted P loads averaged 95 % +/- 18% of calculated P loads for five (5) Cayuga Lake streams

Example prediction for a Seneca Lake stream: Dissolved P loading from the Keuka Outlet = 4.34 tons/year x (31.7 mi<sup>2</sup>/129 mi<sup>2</sup>) x (176.5 ug/L/25.06 ug/L) = 7.51 tons/year

#### Prediction of Dissolved and Particulate Phosphorus Loading to Seneca Lake (tons/year)

| Monitored Sub-<br>watersheds<br>(226 mi <sup>2</sup> ) | Drainage<br>Area<br>(mi²) | ~ Dissolved<br>Phosphorus<br>(tons/year) | ~ Particulate<br>Phosphorus<br>(tons/year)) |
|--------------------------------------------------------|---------------------------|------------------------------------------|---------------------------------------------|
| Reeder Creek                                           | 4.9                       | 1.68                                     | 0.78                                        |
| Kashong Creek                                          | 30.7                      | 2.15                                     | 2.75                                        |
| Keuka Outlet                                           | 31. <i>7</i>              | <i>7</i> .51                             | 13.59                                       |
| Big Stream                                             | 37.1                      | 4.10                                     | 17.70                                       |
| Catharine<br>Creek                                     | 121.6                     | 2.40                                     | 6.36                                        |
| Seneca Lake<br>Watershed                               | 470.8                     | 37.1                                     | 85.7                                        |
| Cayuga Lake<br>Watershed                               | 794.0                     | 41.0                                     | 76.6                                        |





### Seneca Lake Tributary Streams: Conclusions

- <u>Total nitrogen</u> concentrations are elevated in predominantly agricultural areas, similar to Cayuga Lake streams
- <u>E. coli</u> counts are above the recreational limit at base flow, similar to many Cayuga Lake streams. <u>But there are extraordinary rises in E. coli counts at high flows</u>, by a factor of as much as 100
- Dissolved (mostly bioavailable) phosphorus concentrations average roughly 2x to 3x higher in Seneca Lake streams than in Cayuga Lake streams
- The Seneca Lake watershed loads (exports) a ~50% greater mass of dissolved phosphorus per square mile to Seneca Lake than the Cayuga Lake watershed loads to Cayuga Lake



## Implications for Risks from Pathogenic Bacteria and HABs in Seneca Lake

- High E. coli counts point to the presence of significant sources of untreated animal and/or human waste that is readily mobilized in runoff
  - High counts indicate health risks from swimming in streams
  - Recommend checking E. coli counts in Seneca Lake
- High phosphorus levels are broadly correlated with increased HABs in freshwater lakes
  - Shoreline concentrations of dissolved P are likely to be elevated near the mouths of many streams
- Average Nitrogen: Phosphorus > 26:1 at stream mouths except:
  - a) Reeder Creek at base flow (high dissolved P)
  - b) Keuka Outlet and Big Stream at high flow (high particulate P)
- Near shore HABs are probably phosphorus-limited except possibly near Reeder, where HABs may be nitrogen-limited



### <u>Bonus Slides</u>: Investigating Agriculture and Penn Yan WWTP as Pollutant Sources in the Keuka Outlet Watershed

- E. coli and dissolved P exhibit similar concentration profiles upstream to downstream across the Keuka Outlet watershed
  - There is a spike at the mouth of Jakob's Brook; a decrease at Fox's Mills due to dilution; then a steady rise beginning downstream of the WWTP and continuing for the remaining  $\sim 3/4$  of the length of the Outlet
- The Penn Yan WWTP may explain some of the small downstream increases in E. coli and dissolved P at base flow
- Agricultural land use is the logical explanation for high stormwater
   E. coli and phosphorus, both upstream of the WWTP at Jakob's
   Brook and downstream all the way to Seneca Lake
  - If downstream E. coli and phosphorus were from WWTP, dilution should cause them to decrease



### Monitoring Locations on Keuka Outlet





### Keuka Outlet and Jacob's Brook Drainage Areas





Base flow E. Coli is highest at Jakob's Brook and in WWTP effluent (note reverse order of locations on graphs compared to maps)





# Stormwater E. Coli peaks at Jakob's Brook, falls due to dilution, then rises post-WWTP and downstream agricultural areas





# Stormwater phosphorus peaks at Jakob's Brook, falls due to dilution, then rises post-WWTP and downstream agricultural areas





### Acknowledgements

- Sample collection in fair weather and foul: Seneca Lake Pure Waters Association
- Accurate laboratory analyses: Michi Schulenberg, Noah Mark, Laura Dwyer
- Graphs and slides: Claire Weston
- Database: Abner Figueroa